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We study a system composed of two parallel totally asymmetric simple exclusion processes with open
boundaries, where the particles move in the two lanes in opposite directions and are allowed to jump to the
other lane with rates inversely proportional to the length of the system. Stationary density profiles are deter-
mined and the phase diagram of the model is constructed in the hydrodynamic limit, by solving the differential
equations describing the steady state of the system, analytically for vanishing total current and numerically for
nonzero total current. The system possesses phases with a localized shock in the density profile in one of the
lanes, similarly to exclusion processes endowed with nonconserving kinetics in the bulk. Besides, the system
undergoes a discontinuous phase transition, where coherently moving delocalized shocks emerge in both lanes
and the fluctuation of the global density is described by an unbiased random walk. This phenomenon is
analogous to the phase coexistence observed at the coexistence line of the totally asymmetric simple exclusion
process, however, as a consequence of the interaction between lanes, the density profiles are deformed and in
the case of asymmetric lane change, the motion of the shocks is confined to a limited domain.
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I. INTRODUCTION

The investigation of interacting stochastic driven diffusive
systems plays an important role in the understanding of non-
equilibrium steady states �1,2�. As opposed to equilibrium
statistical mechanics, phase transitions may occur in these
systems even in one spatial dimension �3�. The paradigmatic
model of driven lattice gases is the one-dimensional totally
asymmetric simple exclusion process �TASEP� �4,5�, which
exhibits boundary induced phase transitions �6� and the
steady state of which is exactly known �7,8�. Beside theoret-
ical interest, this model and its numerous variants have found
a wide range of applications, such as the description of ve-
hicular traffic �9� or modeling of transport processes in bio-
logical systems �10�. Inspired by the traffic of cytoskeletal
motors �11�, such models were introduced where a totally
asymmetric exclusion process is coupled to a finite compart-
ment where the motion of particles is diffusive �12–14�. Re-
cently, the attention has turned to exclusion processes en-
dowed with various types of reactions which violate the
conservation of particles in the bulk �15–28�. The simplest
one among these models is the TASEP with “Langmuir ki-
netics,” where particles are created and annihilated also at
the bulk sites of the system �16�—a process, which may
serve as a simplified model for the cooperative motion of
molecular motors along a filament from which motors can
detach and attach to it again. For these types of systems, the
time scale of nonconserving processes compared to that of
directed motion and the processes at the boundaries is cru-
cial. If the nonconserving reactions occur with rates of larger
order than the inverse of the system size L, then in the large
L limit, they dominate the stationary state. On the contrary,
when they are of smaller order than O�1/L�, they are irrel-
evant and the stationary state is identical to that of the un-
derlying driven diffusive system. However, in the marginal

case when the rates of nonconserving processes are of order
O�1/L�, the interplay between them and the boundary pro-
cesses may result in intriguing phenomena, such as ergodic-
ity breaking �19,24� or the appearance of a localized shock in
the density profile �16�, which is in contrast to the delocal-
ized shock dynamics at the coexistence line of the TASEP
�8,29�. The formation of domain walls can be observed also
experimentally in the transport of kinesin motors in accor-
dance with theoretical predictions �30–32�.

Other systems which have an intermediate complexity
compared to exclusion processes with bulk reactions and
those coupled to a compartment are the two-channel or mul-
tichannel systems. In these models, particles are either con-
served by the dynamics in each lane and interaction is real-
ized by the dependence of the hop rates on the configuration
of the parallel lanes �33–38�, or particles can jump between
lanes �39–42�. We study in this work a two-lane exclusion
process where particles move in the two lanes in opposite
directions. Particles are allowed to change lanes and we re-
strict ourselves to the case of weak lane change rates, i.e.
they are inversely proportional to the system size. This
means that the probability that a marked particle changes
lanes during the time it resides in the system is O�1�. If
particles in one of the lanes are regarded as holes, and vice
versa, this model can also be interpreted as a two-channel
driven system where particles move in the same direction in
the channels and are created and annihilated in pairs. In the
hydrodynamic limit of the model, we shall construct the
steady-state phase diagram by means of analyzing the differ-
ential equations describing the model on the macroscopic
scale. At the coexistence line, where coherently moving de-
localized shocks develop in both lanes, which is reminiscent
of the delocalized shock dynamics at the coexistence line of
the TASEP, the density profiles are studied in the framework
of a phenomenological domain wall picture based on the
hydrodynamic description. Recently, a two-lane exclusion
process has been investigated with weak, symmetric lane
change, where particles move in the lanes in the same direc-*juhasz@szfki.hu
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tion �42�. In this model, the formation of delocalized shocks
in both lanes has been found, as well. In our model, even the
case of asymmetric lane change can be treated analytically in
the hydrodynamic limit if the total current is zero, which
holds also at the coexistence line.

The paper is organized as follows. In Sec. II, the model is
introduced and the hydrodynamic description is discussed. In
Sec. III, the case of symmetric lane change is investigated,
while Sec. IV is devoted to the asymmetric case. The results
are discussed in Sec. V and some of the calculations are
presented in two Appendixes.

II. DESCRIPTION OF THE MODEL

The model we focus on consists of two parallel one-
dimensional lattices with L sites, denoted by A and B, the
sites of which are either empty or occupied by a particle. The
state of the system is specified by the set of occupation num-
bers ni

A,B which are zero �one� for empty �occupied� sites. We
consider in this system a continuous-time stochastic process
where the occupations of pairs of adjacent sites change inde-
pendently and randomly after an exponentially distributed
waiting time. The possible transitions and the corresponding
rates, i.e., the inverses of the mean waiting times, are the
following �Fig. 1�. On chain A, particles attempt to jump to
the adjacent site on their right-hand side, whereas on chain B
to the adjacent site on their left-hand side, with a rate which
is set to unity, and attempts are successful when the target
site is empty. On the first site of chain A and on the Lth site
of chain B particles are injected with rate �, provided these
sites are empty, whereas on the Lth site of chain A and on the
first site of chain B they are removed with rate �. So the
system may be regarded to be in contact with virtual particle
reservoirs with densities � and 1−� at the entrance and exit
sites, respectively. The process described so far is composed
of two independent totally asymmetric simple exclusion pro-
cesses. The interaction between them is realized by allowing
a particle residing at site i of chain A�B� to hop to site i of
chain B�A� with rate �A ��B�, provided the target site is
empty.

As in the case of the TASEP with Langmuir kinetics, one
must distinguish here between three cases, concerning the
order of magnitude of the lane change rates in the large L
limit. If the rates �A and �B are of larger order than O�1/L�,
then in the limit L→�, the interchain processes are domi-
nant compared to the effects of the boundary reservoirs and

the horizontal motion of the particles. The densities � and �
in lane A and B, respectively, are expected to be constant far
from the boundaries and to fulfill the relation �A��1−��
=�B��1−��, which is forced by the lane change kinetics.
When the interchain hop rates are smaller than O�1/L�, then
�apart from some possible special parameter combinations
�20�� they are irrelevant in the L→� limit and the stationary
state is that of two independent exclusion processes. An in-
teresting situation arises if the rates �A and �B are propor-
tional to 1/L. In this case the effects of boundary reservoirs
and those of lane change kinetics are comparable and the
competition between them results in nontrivial density pro-
files. We focus on this case in the present work, and param-
etrize the lane change rates as �A=�A /L and �B=�B /L,
with the constants �A and �B. Setting the lattice constant a
to a=1/L and rescaling the time t as 	= t /L, we are inter-
ested in the properties of the system in the �continuum� limit
L→�, where the state of the system is characterized by the
local densities ��x ,	� and ��x ,	� on chain A and B, respec-
tively, which are functions of the continuous space variable
x� �0,1� and time 	. Turning our attention to the subsystem
containing lane A�B� alone, we see that the interchain hop-
pings can be interpreted as bulk nonconserving processes for
the TASEP in lane A�B�. The bulk reservoir which the
TASEP is connected to is, however, not homogeneous but it
is characterized by the position and time-dependent density
��x ,	�(��x ,	�). Generally, driven diffusive systems which
are combined with a weak �i.e., O�1/L�� bulk nonconserving
process are described on the macroscopic scale specified
above by the partial differential equation

���x,	�
�	

+
�J„��x,	�…

�x
= S„��x,	�… , �1�

where S(��x , t�) is the source term related to the nonconserv-
ing process and J��� is the current as a function of the den-
sity in the steady state of the corresponding translation in-
variant infinite system without nonconserving processes �i.e.,
S(��x ,	�)�0� �17�. Under these circumstances, the TASEP
has a product measure stationary state and the current density
relationship is simply J���=��1−��, hence the currents
in the two lanes are given as JA(��x ,	�)=��x ,	��1−��x ,	��
and JB(��x ,	�)=−��x ,	��1−��x ,	�� in terms of the local
densities. For the source terms in the two lanes, we
may write SA(��x ,	� ,��x ,	�)=−SB(��x ,	� ,��x ,	�)=�B�1
−��x ,	����x ,	�−�A��x ,	��1−��x ,	�� since the lane change
events at a given site are infinitely rare in the limit L→�.
Setting these expressions into Eq. �1� we obtain that in the
steady state, where �	��x ,	�=�	��x ,	�=0, the density pro-
files ��x� and ��x� satisfy the coupled differential equations

�2� − 1��x� + �B�1 − ��� − �A��1 − �� = 0,

�2� − 1��x� + �B�1 − ��� − �A��1 − �� = 0. �2�

We mention that one arrives at the same differential equa-
tions when in the master equation of the process the expec-
tation values of pairs of occupation numbers �ninj� are re-
placed by the products �ni��nj�, and afterwards it is turned to

ωA ωBωB ωAβ 1

1α

A

B

1 L

β

α

FIG. 1. Transitions and the corresponding rates in the model
under study.
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a continuum description with retaining only the first deriva-
tives of the densities and neglecting the higher derivatives
which are at most of the order O�1/L� almost everywhere.

For the stationary density profiles the boundary conditions
��0�=��1�=� and ��1�=��0�=1−� are imposed. In fact,
we shall keep these boundary conditions only for � ,�

1/2; otherwise, we modify them for practical purposes at
the level of the hydrodynamic description. The reason for
this is the following. In the domain � ,��1/2 of the TASEP,
the so-called maximum current phase, the current is limited
by the maximal carrying capacity in the bulk, J=1/4, which
is realized at the bulk density �=1/2 �7,8�. In this phase,
boundary layers form in the stationary density profile at both
ends, where the density drops to the bulk value �=1/2. Simi-
larly, in the case of the TASEP with Langmuir kinetics, if the
entrance rate � exceeds the value 1/2, then in the density
profile dictated by the reservoir at the entrance site, a bound-
ary layer develops, where the density drops to 1/2. The
width of the boundary layer is growing sublinearly with L
�20�, such that in the hydrodynamic limit, it shrinks to x=0
and limx→0 ��x�=1/2 holds, independently of �, which in-
fluences only the shape of the microscopic boundary layer.
These considerations apply also to the present model at both
ends and for both lanes. Therefore, in order to simplify the
treatment of the problem at the level of the hydrodynamic
description, we use the effective boundary conditions

��0� = ��1� = a, ��1� = ��0� = 1 − b , �3�

where a�min�� ,1 /2	 and b�min�� ,1 /2	. However, we
stress that, although the profile propagating from, e.g., the
left-hand boundary �l�x� is continuous at x=0 according to
the effective boundary conditions �3� for ��0, a boundary
layer forms on the microscopic scale.

In addition to the boundary layers related to the maximal
carrying capacity in the bulk, the stationary density profiles
may in general contain another type of boundary layer of
finite width or a localized shock in the bulk, where the den-
sity has a finite variation within a region the width of which
is growing sublinearly with L �16,18�. This leads to the ap-
pearance of discontinuities in ��x� and ��x� in the hydrody-
namic limit, either in the bulk 0�x�1 in the case of a shock
or at x=0,1 in the case of a boundary layer. This is in ac-
cordance with the fact that, in general, there does not exist a
continuous solution to the two first-order differential equa-
tions, which fulfills all four boundary conditions. Apart from
some special parameter combinations, there is one disconti-
nuity in each lane, which is either in the bulk �a shock� or at
x=0,1 �a boundary layer�. The location of the discontinuity
is determined by the requirement that the currents in both
lanes JA(��x�) and JB(��x�) must be continuous functions of
x in the bulk 0�x�1 �17,18�. This follows from that the
width of the shock region is proportional to 
L, thus the rate
of a lane change event is vanishing there in the limit L→�.
This condition permits only such a shock which separates
complementary densities on its two sides, i.e., � and 1−� in
lane A or � and 1−� in lane B. The position of the shock xs,
e.g., in lane A is thus given implicitly by the equation
�l�xs�=1−�r�xs�, where �l�x� and �r�x� are the solutions on

the two sides of the shock. For the detailed rules on the
stability of the discontinuity at x=0,1 see Ref. �17�.

Subtracting the two differential equations yields the obvi-
ous result that the total current

J � ��x��1 − ��x�� − ��x��1 − ��x�� �4�

is a �position independent� constant. This relation makes it
possible to eliminate one of the functions, say, ��x� and to
reduce the problem to the integration of a single differential
equation

d�

dx
= �A

� − �1

2
±
�� −

1

2
2

+ J��K�1 − �� + ��

2� − 1
, �5�

where we have introduced the ratio of lane change rates K
��B /�A and the signs in front of the square root are related
to the two solutions �+�x��1/2 and �−�x��1/2 of the qua-
dratic equation �4�. Disregarding the simple case K=1, there
are two difficulties about this equation. First, the solution
depends on the current J as a parameter, which itself depends
on the density profiles and is a priori not known. Fortunately,
apart from two phases in the phase diagram, ��x� and ��x�
simultaneously fit to the boundary conditions either at x=0
or x=1, consequently, the current is exclusively determined
by the entrance and exit rates as J=a�1−a�−b�1−b�. In the
remaining two phases, the functions ��x� and ��x� meet the
boundary conditions at the opposite ends of the system.
Here, one may solve Eq. �5� iteratively until self-consistency
is attained. Second, even in the case when J is known, Eq.
�5� cannot be analytically integrated in general, except for
the case when the current is zero. This is realized in three
cases, two of which are related to the symmetries of the
system. We discuss these possibilities in the rest of the sec-
tion.

As the two entrance and exit rates were chosen to be
identical, the obvious relation holds when the rates �A and
�B are interchanged,

��x;�,�,�A,�B� = ��1 − x;�,�,�B,�A� , �6�

where the dependence of the profiles on the four parameters
�, �, �A, and �B is explicitly indicated. This relation, to-
gether with Eq. �4�, implies that the current changes sign if
�A and �B are interchanged. Thus �A=�B implies J=0, that
holds apparently since none of the chains is singled out in
this case.

As a consequence of the particle-hole symmetry of the
model, we have the relation

��x;�,�,�A,�B� = 1 − ��x;�,�,�A,�B� . �7�

Using Eq. �4�, it follows that the current changes sign when
� and � are interchanged, so it must be zero for �=�. Al-
ternatively, this can be seen by interchanging particles and
holes in one of the chains, which results in a two-channel
system where particles move in the channels in the same
direction and particles are created and annihilated in pairs at
neighboring sites of the two chains with rates �A and �B,
respectively. Particles are injected and removed in the chan-
nels with the same rate, hence the channels are equivalent.
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Since the currents of particles and holes are equal, the total
current must be zero.

The third parameter regime where the current is zero is
the domain � ,�1/2. Here, as aforesaid, the density pro-
files and the current are independent of � and � in the hy-
drodynamic limit. Since the current is zero for �=� it fol-
lows that J=0 in the whole domain � ,�1/2.

III. SYMMETRIC LANE CHANGE

We start the investigation of the model with the simple
case of equal lane change rates ��A=�B���, where the
solutions to the hydrodynamic equations are analytically
found and some general features of the model can be under-
stood. Since the total current is zero, either ��x�=��x� or
��x�=1−��x� must hold. Substituting the former relation
into Eq. �2� yields

�e�x� = �e�x� = const, �8�

whereas the latter gives

�c�x� = 1 − �c�x� = �x + const. �9�

Thus, the profiles are piecewise linear and consist of constant
segments with equal densities in the two lanes and segments
of slope � �−�� in lane A�B� with complementary densities.
Switching off the interchain particle exchange ��=0�, we
get two identical TASEPs, which have, apart from the coex-
istence line �=��1/2, constant density profiles in the bulk.
In the high-density phase ���min�� ,1 /2	�, the density, be-
ing 1−�, is controlled by the exit rate and the profile is
discontinuous at x=0. In the low-density phase ��
�min�� ,1 /2	�, the density is � and a discontinuity appears
at x=1 �7,8�. In the maximum current phase �� ,��1/2�, as
we have already mentioned, the bulk density is 1 /2 and
boundary layers appear at both ends. On the other hand, the
effect of symmetric lane change processes is to diminish the
difference between the local densities in the two lanes. Since
the densities are already equal without the interaction, this
situation is obviously not altered when switching on the ver-
tical hopping processes. Consequently, the density profiles in
the bulk are identical to that of the TASEP in these phases.

This is, however, not the case at the coexistence line �
=��1/2. In the TASEP, a sharp domain wall emerges here
in the density profile, which separates a low- and a high-
density phase with constant densities far from the domain
wall � and 1−�, respectively. The stochastic motion of the
domain wall is described by an unbiased random walk with
reflective boundaries �8,29�, such that the average stationary
density profile connects linearly the boundary densities �
and 1−�. Returning to our model, we consider first the
closed system, i.e., �=�=0. The profiles which fulfill the
requirement about the continuity of the currents are depicted
in Fig. 2 for various global particle densities �� limL→�

N
2L ,

where N is the number of particles in the system. Here, the
density profiles consist of three segments in general. In the
middle part of the system an equal-density segment is found
�Figs. 2�a�, 2�b�, and 2�d��. This region is connected with the
boundaries by complementary-density segments on its left-

hand side and on its right-hand side, which are continuous at
x=0 and x=1, respectively. In both lanes, the density profile
is continuous at one end of the equal-density segment and a
shock is located at the other one, such that the two shocks are
at opposite ends. The density in the equal-density region �and
at the same time the location of the shocks� depend on the
global particle density. At �=1/2, the equal-density segment
is lacking if ��1 �Fig. 2�c�� and the profiles are linear if
�=1.

If particles are allowed to enter and exit from the system
at the boundaries, i.e., 0��=��1/2, the total number of
particles is no longer conserved. Nevertheless, we expect that
the stationary density profiles averaged over configurations
with a fixed global density �, ���x�, and ���x�, can still be
constructed from the solutions �8� and �9� of the hydrody-
namic equations. These profiles are similar to those of the
closed system and the only difference is that the
complementary-density segments fit to the altered boundary
conditions ���0�=���1�=� and ���1�=���0�=1−�. This is
indeed the case in the limit �→0. Here, the injections and
removals of particles at the boundary sites, which modify the
global density, are infinitely rare, such that the system has
always enough time to relax, i.e., to adjust the density pro-
files to the slightly altered global density. As long as the
shocks are not in the vicinity of the boundaries, the densities
at the boundary sites are independent from the global density,
which influences only the position of the equal density seg-
ment. Therefore, the stochastic variation of the global density
��t� is described by a homogeneous, symmetric random
walk in the interval �0, 1� with reflective boundary condi-
tions. For finite �, we can give only a heuristic argument
why we expect that the fluctuations of the global density are
quasistationary in the above sense. In the stationary state, the
center of the mass of a small instantaneous local perturbation
propagates with a velocity v�x�=1−2��x� �29,43�, which
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FIG. 2. Density profiles of the closed system ��=�=0� with
�=0.5 for different global densities: �a� �=0.26, �b� �=0.44, �c�
�=0.5, and �d� �=0.74. The thin solid and dashed lines represent
the flow field of the differential equation �5� corresponding to the
complementary-density and equal-density solutions, respectively.
The thick solid and dashed lines are the density profiles ��x� and
��x�, respectively.
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changes sign at �=1/2. In the complementary-density seg-
ments, the perturbations in the density, which come from the
fluctuations of the boundary reservoirs, are thus driven to-
ward the equal-density segment with a finite velocity. The
characteristic traveling time of the perturbation, as well as
the time scale related to the lane change processes in a finite
system of size L is O�L�. The relaxation time of the pertur-
bation is thus expected to be O�L�. However, the random
walk dynamics of the global density implies that the time
scale of a finite change in the global density is O�L2�, which
is large compared to the relaxation time, thus the density
profile has enough time to follow the instantaneous global
density. The fluctuating global density ��t� is thus expected
to be a symmetric random walk with reflective boundaries at
� and 1−�. In the stationary state, the global density is
therefore homogeneously distributed in the interval �� ,1
−��.

On the other hand, one can easily calculate that if the
position of the shock in lane A is xs, the global density of
particles in the system is ��xs�= �1−xs����xs�+��+� for xs

1/2, where we have introduced the �position dependent�
height of the shock: ��xs�=2��xs−1�+1−2�. Note that, as
opposed to the single lane TASEP, this relation is no longer
linear, therefore the probability distribution of the position of
the shock is not uniform in the steady state.

With these prerequisites, the steady-state density profile in
lane A can be easily calculated by averaging ���x� over the
steady-state distribution of the global density: ��x�
= 1

1−2���
1−����x�d�. Skipping the details of the straightfor-

ward calculations, we shall give the profile ��x� in the inter-
val 1

2 
x
1, whereas for 0
x

1
2 , it is obtained by the help

of the relation ��x�=1−��1−x�, that follows from Eqs. �6�
and �7�. The density profile in lane B can be calculated by
making use of Eq. �7�, which implies ��x�=1−��x�. The
cases corresponding to the different signs of �� 1

2
� must be

treated separately. For �� 1
2

�0, we obtain

��x� =
1

2
+

�x − 1
2��2�x�

1 − 2�
, �� 1

2�  0, �10�

which is a third-degree polynomial of x. If �� 1
2

��0, the sec-
ond derivative of ��x� is discontinuous at x= 1

2 . In the limit
�→0, the linear profile of the TASEP at the coexistence line
is recovered. If �� 1

2
�=0, Eq. �10� simplifies to

��x� = 1
2 + 4��x − 1

2�3, �� 1
2� = 0, �11�

which is everywhere analytic. For �� 1
2

��0, the profile is
constant in the interval 1

2 
x
 ��� 1
2

�� / �2��+ 1
2 , where ��x�

=1/2, while it is given by Eq. �10� in the interval
��� 1

2
�� / �2��+ 1

2 
x
1. These curves, as well as results of
Monte Carlo simulations for finite systems of size L=64,
128, and 256 are shown in Fig. 3. In the numerical simula-
tions, after waiting a period of 106 Monte Carlo steps in
order to reach the steady state, we have measured the local
occupancies every 10 Monte Carlo steps during a period of
5�109 steps. For increasing L, the properly scaled profiles
seem to tend to the analytical curves expected to be valid in
the continuum limit.

IV. ASYMMETRIC LANE CHANGE

In this section, the stationary properties of the model are
investigated in the case K�1. Due to the symmetries of the
system, we may restrict ourselves to the investigation of the
part K�1, �
� of the parameter space, which is related to
the remaining part through Eqs. �6� and �7�. Analyzing the
solutions to the hydrodynamic equation �5�, one can con-
struct the phase diagram in the four-dimensional parameter
space spanned by �, �, �A, and �B. Two representative two-
dimensional cross sections of the parameter space at fixed
lane change rates are shown in Figs. 4 and 5. As can be seen,
the phase boundaries are symmetric to the diagonal, which is
a consequence of Eq. �7�. On the other hand, the phase dia-
grams are richer compared to that of the symmetric model:
Besides the phases where the profiles are continuous in the
interior of the system, the asymmetry in the lane change
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FIG. 3. Density profiles in lane A at the coexistence line at �
=�=0.1, obtained by numerical simulation for different system
sizes and for different values of �: �a� �=0.4, �b� �=0.8, and �c�
�=1.2. In the case �=0.8, the height of the shock at xs=1/2 is
zero. The solid curves are the analytical predictions in the hydro-
dynamic limit. The thick solid lines represent the profile ���x� at
global density �=1/2.
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kinetics leads to the appearance of phases where one of the
lanes contains a localized shock in the bulk. This is reminis-
cent of the shock phase of the single lane TASEP with Lang-
muir kinetics. As a new feature, the position of the shock
may vary discontinuously with the boundary rates here,
when the so-called discontinuity line is crossed. The coexist-
ence line, where coherently moving delocalized shocks
emerge in both lanes, is still present, however, it is shorter
than in the symmetric case and the shocks walk only a
shrunken domain. The subsequent part of the section is de-
voted to the detailed analysis of these findings.

A. Density profiles

We start the presentation of the results with the descrip-
tion of the density profiles in the phases below the diagonal
�=� of the two-dimensional phase diagrams.

If the exit rate is small enough, the densities in the bulk
exceed the value 1/2 in both lanes �Fig. 6�a��. Both profiles
are continuous in the bulk and at the exits, i.e., limx→1 ��x�
=limx→0 ��x�=1−b, but they are discontinuous at the en-
trances, i.e., limx→0 ��x��a and limx→1 ��x��a, which sig-

nals the appearance of boundary layers on the microscopic
scale. The profiles ��x� and ��x�, as well as the current,
depend exclusively on �, while � influences only the bound-
ary layers at the entrances. This situation is observed also in
the high-density phase of the TASEP with Langmuir kinetics
�16,18�; therefore we call this phase H-H phase, referring to
the high density in both lanes.

In the phase denoted by S-H in the phase diagram, ��x�
and ��x� are continuous at the exits, similarly to the H-H
phase, however, the discontinuity in ��x� is no longer at x
=0 but it is shifted to the interior of the system �Fig. 6�b��.
Thus limx→0 ��x�=a holds and a shock is located in lane A at
some xs �0�xs�1�. Therefore this phase is termed S-H
phase, where the letter S refers to the shock in lane A and
letter H refers to the high density ���x��1/2� in lane B. The
function ��x� is discontinuous at x=1, i.e., limx→1 ��x��a
and it is not differentiable �although continuous� at xs. Since
both ��x� and ��x� are continuous at x=0, the total current is
given by

J = a�1 − a� − b�1 − b� �12�

in this phase. The profile ��x� at fixed � and � can be com-
puted by substituting the current calculated from Eq. �12�
into the differential equation �5�. Then, the solutions propa-
gating from the left-hand and the right-hand boundary, i.e.,
the solutions �l�x� and �r�x� fulfilling the boundary condi-
tions �l�0�=a and �r�1�=1−b, respectively, are calculated
numerically. Finally, the position of the shock xs is obtained
from the relation �l�xs�=1−�r�xs�, which is implied by the
continuity of the current in lane A. Once ��x� is at our dis-
posal, ��x� can be calculated from Eq. �4�.

Apart from the discontinuity line to be discussed in the
next section, the position of the shock xs varies continuously
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with the boundary rates in the S-H phase. Fixing � and re-
ducing �, xs is decreasing and at a certain value of �, �
=�H���, the shock reaches the left-hand boundary at x=0. At
this point the right-hand solution �r�x� extends entirely to the
left-hand boundary and a further increase in � drives the
system to the H-H phase. The phase boundary �H��� be-
tween the S-H and the H-H phase is thus determined from
the condition xs=0 or, equivalently, �r�1�=1−a. When � is
increased along a vertical path in the phase diagram at a
fixed �, xs increases and for ���1, where the constant �1
will be determined later, the path hits the coexistence line
before the shock would reach the right-hand boundary �see
Sec. 3D�. Increasing � along a path at some ���1, the
shock reaches the right-hand boundary at x=1 for a certain
value of �, �=�L��� and the path leaves the S-H phase. At
the phase boundary, the left-hand solution �l�x� extends to
the whole system and �l�1�=b must hold.

Crossing the phase boundary �L���, the L-H phase is en-
tered, where letter L refers to the low density in lane A since
here, ��x��1/2 and ��x��1/2 hold in the bulk �Fig. 6�c��.
In this phase, ��x� and ��x� are discontinuous at x=1,
whereas they are continuous at x=0 hence the current is
given by Eq. �12�. In the part of the L-H phase where the
current is zero, i.e., if �=� or � ,�1/2, the profiles can be
calculated analytically. The equal-density solutions of Eq. �5�
are

ln��e�x��1 − �e�x��	 = �A�K − 1�x + const,

�e�x� = �e�x� , �13�

whereas the complementary-density solutions read as

�1

�2
ln��c�x� − �1� −

�2

�1
ln��c�x� − �2� = 2�A


Kx + const,

�c�x� = 1 − �c�x� , �14�

where the constants �1�1/ �1+K−1/2� and �2�1/ �1−K−1/2�
are the roots of the equation SA�� ,1−��=0. There is, further-
more, a special complementary-density solution with con-
stant densities,

�c�x� = �1,

�c�x� = 1 − �1. �15�

In the part of the L-H phase where J=0, the profiles are
given by the complementary-density solution which fulfills
the boundary conditions �c�0�=a and �c�0�=1−a �Fig.
6�d��.

B. Phase boundaries and the discontinuity line

In the S-H phase �and the L-H phase�, the profiles ��x�
and ��x�, as well as the current are independent of � if �
1/2. Here, limx→0 ��x�=1/2 and � influences only the mi-
croscopic boundary layer, as we argued in Sec. II. As a con-
sequence, the phase boundaries �H��� and �L��� are hori-
zontal lines in the domain �1/2 �see Figs. 4 and 5� and we

may restrict the investigation of the phase boundaries to the
domain �
1/2.

Although we cannot give an analytical expression for the
density profiles in general, some information can be gained
on the phase boundaries of the S-H phase by investigating
the constant solutions of the hydrodynamic equations. A con-
stant solution ��x�=r, ��x�= p must obey SA�r , p�=0, other-
wise the spatial derivatives �x��x� and �x��x� would not van-
ish in Eq. �2�. On the other hand, the constants satisfy the
equation J=r�1−r�− p�1− p�, where J is determined by the
boundary rates via Eq. �12�. Eliminating p yields that r is
given by the implicit equation

r�r − 1��1 −
K

�K + �1 − K�r�2 = J��,�� . �16�

In the S-H phase, this equation has two roots r1(J�� ,�� ,K)
and r2(J�� ,�� ,K) �shortly r1 and r2� in the interval �0, 1�.
One can check that for the larger root r2, the relation 1/2
�1−��r2 holds, whereas the smaller one, r1, may be larger
or smaller than 1/2.

First, we examine the phase boundary separating the L-H
phase and the S-H phase. One can check that at this bound-
ary line, r1�1/2 holds. Moreover, it follows from Eq. �2�
that

d��x�

dx �0 if 0
��x��r1, and
d��x�

dx �0 if r1���x��1/2.
Thus, the line ��x�=r1 behaves as an attractor for the solu-
tions �l�x� propagating from the left-hand boundary x=0 if
�l�0�=�
1/2, meaning that �l�x� approaches monotonously
to r1 as x increases and limx→� �l�x�=r1. Since �l�x� is mo-
notonous and �l�0�=�, as well as �l�1�=� hold at the phase
boundary, at the common point of the boundary line and the
diagonal �=�, �l�x� must be a constant function �l�x�=�.
This, however, implies that � must coincide with r1. The
endpoint of the boundary line �L��� is therefore at �=�
=r1�J=0,K�=1/ �1+K−1/2�, which depends only on K.

As opposed to this point, the whole function �L��� de-
pends both on �A and �B. Nevertheless, we can find an
analytical expression for �L��� in the limit K=const, �A

→�. We can see from Eq. �5� that the derivative
d��x�

dx is
proportional to �A for a fixed K. As a consequence, the
larger �A is the more rapidly �l�x� tends to r1. Thus, in the
limit specified above, lim�A→���l�1�−r1�=0, which leads to
�=r1. Substituting this into Eq. �16�, we obtain for the in-
verse of the boundary curve �L���� in the limit K=const,
�A→�,

��L��−1���

=
1

2
�1 −
1 − 4��1 − ���2 −

K

�K + �1 − K���2� .

�17�

This curve is plotted in Fig. 7. The phase boundaries ob-
tained by integrating Eq. �5� numerically for finite lane
change rates tend rapidly to this limiting curve.

Next, we turn to examine the boundary curve between the
S-H and the H-H phase, �H���. Along this line, �r�0�=1
−� and �r�1�=1−� hold, and the roots of Eq. �16� are ar-
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ranged as r1�1−��1−��r2. One can show that the line
��x�=r2 is an attractor for the solutions �l�x� which start at
x=0 if �l�0��max�1/2 ,r1	. Moreover, if r1�1/2, the line
��x�=r1 repels the solutions �l�x� starting from x=0 if r1

��l�0��r2, or, in other words, the solutions �r�x� propagat-
ing from the right-hand boundary, for which r1��r�1��r2,
are attracted by the line ��x�=r1. When the diagonal is ap-
proached along the phase boundary �L���, the profile �r�x�,
being monotonous, must tend to the constant function �r�x�
=1−�, as well as ��x� since the current is zero at the diag-
onal. However, equal densities in the two lanes are possible
for K�1 only if the density is one �or zero�, therefore the
boundary line must approach the diagonal at �=0. This is in
accordance with the fact that r2=1 if J=0. Thus, we obtain
lim�→0 �L���=0, independently of the lane change rates.

Similarly to �L���, the location of the whole boundary
line �H��� depends on both lane change rates �see Figs. 7
and 8� and we can give an analytical expression for �H���
again only in the limit K=const, �A→�. As aforesaid, the
profile given by �r�x� lies between two attractors, ��x�=r1

and ��x�=r2, to which the solutions tend in the limit x→
−� and x→�, respectively. When �A is increased �such that

K is fixed�, then �L��� at a fixed � decreases. Thus, the
current is increasing and the two roots of Eq. �16�, r1 and r2
are coming closer. Keeping in mind that r1�1−��1−�
�r2, there are now two possible cases. Depending on the
value of �, either the gap between 1−� and r2 or the gap
between r1 and 1−� vanishes first. In other words, in the
former case, the profile is attracted to the line ��x�=r2 at x
=1 in the limit �A→�, i.e., lim�A→���r�1�−r2�=0, whereas
in the latter case it is attracted to the line ��x�=r1 at x=0
�provided that r1�1/2�, i.e., lim�A→���r�0�−r1�=0. In the
first case, substituting r=1−� into Eq. �16�, we obtain for
the inverse of the limiting curve �H�

b ��� in terms of �L����,

��H�
b �−1��� = ��L��−1�1 − �� , �18�

whereas in the second case, r=1−� yields

�H�
a ��� =

1

2
�1 −
1 −

4��1 − ��K
�K + �1 − K��1 − ���2 . �19�

These curves are plotted in Fig. 8. The phase boundary in the
limit K=const, �A→� is given by

�H���� = max��H�
a ���,�H�

b ���	 . �20�

The value �* at which the functions �H
a ��� and �H

b ��� inter-
sect varies with K. If K→1, �* tends to


3−1
2
3

=0.211 32. . .,
while �*=1/2 if K is equal to

K* = 1 + 
2 − 
2�1 + 
2� = 0.216 84 ¯ . �21�

Thus, for K
K*, the limiting curve of �H��� is given by Eq.
�18� alone, otherwise it is composed of Eq. �18� and Eq. �19�
as given by Eq. �20�.

Although the curve �H���� gives the phase boundary line
only in the limit K=const, �A→�, we show that for K
�K* and for large enough �A, �A�A

*�K�, the phase tran-
sition point at �=1/2 is given exactly by Eq. �19�, i.e.,
�H�1/2�=�H�

a �1/2�= K
1+K .

In order to see this, we discuss first the possible appear-
ance of a discontinuity line in the S-H phase, at which the
position of the shock xs changes discontinuously. If r1=1/2,
one can see from Eq. �2� that for the spatial derivative of the

profile, lim�→1/2

d��x�

dx �0 holds and the left-hand and right-
hand solutions �l�x� and �r�x� may propagate as far as the
line ��x�=1/2. If �l�x1�=1/2 and �r�x2�=1/2 hold for some
x1 and x2, such that 0�x1�x2�1, then the left-hand and
right-hand solutions are connected by a constant segment
��x�=1/2 in the interval �x1 ,x2� and the profile is continuous
�Fig. 9�c��. Substituting r=1/2 into Eq. �16� we obtain the
equation of the discontinuity line, ��1−��−��1−��
= � 1−K

2�1+K� �2, along which the current is constant. Solving this

equation for �, we obtain

�d��� =
1

2
�1 −
1 − 4��1 − �� + 4� 1 − K

2�1 + K�
2� .

�22�

This curve is shown in Fig. 5. When at an arbitrary point
of this line, � is infinitesimally decreased, then r1 exceeds
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the value 1/2 and a shock appears at x1 with an infinitesimal
height �Fig. 9�a��. Conversely, an infinitesimal increase in �
decreases r1 below 1/2 and an infinitesimal shock appears at
x2 �Fig. 9�b��. Thus, when this line is crossed, the position of
the shock jumps from x1 to x2. At the point of the disconti-
nuity line at �=1/2, x1=0 holds and an infinitesimal in-
crease �decrease� in � drives the system to the H-H �S-H�
phase. Therefore the point of this curve at �=1/2 coincides
with the phase boundary, i.e., �d�1/2�=�H�1/2�. On the
other hand, comparing Eq. �19� and Eq. �22�, we see that
�d�1/2�=�H�

a �1/2�= K
1+K . The function �H�

a ��� thus gives
the phase transition point at �=1/2 exactly, provided the
curve �d��� is located in the S-H phase. That means if K
�K* and �A�A

*�K�, where �A
*�K� is the value of �A at

which �H�1/2� first reaches the value K
1+K , when �A is in-

creased from zero. For example, for K=1/2, we have found
�A

*�1/2��0.719 �Fig. 8�. We emphasize, however, that the
discontinuity line is lacking if K�K* or K�K* but �A
��A

*�K�.
If K�K* and �A��A

*�K�, then, at the transition point at
�=1/2, we have x1=0; �A influences only x2 and x2→0 if
�A→�A

*�K�. Moving away from the point at �=1/2 along
the discontinuity line, the length of the constant segment x2
−x1 is decreasing and vanishes at a certain point. Here, the
density profile becomes analytical and the discontinuity line
terminates �see Fig. 9�d� and Fig. 5�. The position of this
endpoint depends on �A and it is moving toward smaller
values of � for increasing �A; in the large �A limit, it tends
to the point of intersection of �d��� and �H�

b , whereas in the
limit �A→�A

*�K�, the abscissa of the endpoint tends to 1/2.
Finally, we mention that an other special curve in the S-H

phase is defined by the equation SA�� ,1−��=0. At this
curve the left-hand solution �l�x� is constant, therefore both
��x� and ��x� are constant in the interval �0,xs�.

C. Current

We have seen that, apart from the H-H �and the L-L
phase�, the current is given by Eq. �12�. It is zero at the line

�=� and in the domain � ,�1/2 and it is independent of �
��� in the H-H �L-L� phase. It is a continuous function of the
boundary rates everywhere, although nonanalytic at the
boundaries of the H-H phase and the L-L phase, as well as at
the lines �=1/2 and �=1/2 outside the H-H phase and the
L-L phase, where the effective boundary rates a and b satu-
rate at 1 /2.

In the following, we concentrate on the current in the H-H
phase. Since it is continuous at the boundary line �H���, it
can be expressed in the H-H phase in terms of �H��� as
J���=�H

−1����1−�H
−1����−��1−��. According to numerical

results �see Fig. 10�, the current J��� has a maximum in the
H-H phase, and for large �A, the location of the maximum
tends to �=�H�1/2� for K
K*, while for K�K*, it tends to
�* where the curves �H�

a ��� and �H�
b ��� intersect. Contrary

to this, the current is a monotonously decreasing function of
� in the S-H phase. We now turn to the question, at which
parameter combination the total current is maximal in the
steady state. For fixed K, the maximal current is realized in
the limit �A→� at �H��1/2� for K�K* and at �* for K
�K*. Since the current is growing faster in the S-H phase for
decreasing � than in the H-H phase above �* �if K�K*�, we
conclude that the parameter combination that maximizes the
current is found in the domain K�K*. For K�K*, the maxi-
mal current is thus Jmax�K�=1/4−�H��1/2��1−�H��1/2��.
Since �H��1/2� decreases monotonously with decreasing K,
the current is maximal at K=0, where �H��1/2�= 2−
2

4 and
Jmax�0�=1/8. The value 1/8 is thus an upper bound for the
total current and J→1/8 in the limit �A→� if �1/2, �

= 2−
2
4 and �B=0.
We close this section with the discussion of the current in

the H-H phase when the lane change rates are small, i.e., �A,
�B�1. If the vertical hopping processes are switched off,
the current is zero, hence we expect that for small lane
change rates the current is small, as well. Assuming that J
� � 1

2 −��2 and expanding the right-hand side of Eq. �5� in a
Taylor series up to first order in J, then solving the resulting
differential equation yields finally

J =
1 − K

1 + K
��1 − ���1 − 2��

��
1 + 2�1 + K�
�A

1 − 2�
− 1 + O��A

3� . �23�

The details of the calculation are presented in Appendix A.
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This expression is compared to the current calculated by in-
tegrating Eq. �5� numerically in Fig. 11. Expanding this ex-
pression for small �A, we obtain

J = ��1 − ���1 − K��A�1 −
1 + K

2

�A

1 − 2�
 + O��A

3� .

�24�

The current is thus in leading order proportional to �A. Ex-
amining the higher-order terms in the series expansion of the
right-hand side of Eq. �5�, one can show that for arbitrary
�A, the current vanishes as J�1−K when K→1.

D. Coexistence line

Let us assume that a given point of the section �=�
��1 is approached along a path in the S-H phase. In this
case, the position of the shock in lane A, xs, tends to some
xmin=xmin�� ,�A ,�B�, which is somewhere in the bulk, i.e.,
0�xmin�1. When the same point is approached from the
L-S phase, the position of the shock in lane B tends to the
same xmin according to Eq. �7�. Thus, when the boundary line
�=���1 is passed from the S-H phase, the shock in lane A
jumps from xmin to the right-hand boundary at x=1, where a
discontinuity appears, while the discontinuity at x=1 in lane
B, which can be regarded as a shock localized there, jumps to
xmin. So, the density profile changes discontinuously. Strictly
at �=�, the shocks in both lanes are delocalized and perform
a stochastic motion in the domain �xmin,1�, similarly to the
symmetric model with K=1 at the line �=��1/2.

Now, this phenomenon is investigated in detail in the case
of asymmetric lane change. Since the current is zero if �
=�, the solutions of the hydrodynamic equations are those
given in Eq. �13� and Eq. �14� �see Fig. 12�. The argumen-
tation about the quasistationarity of the fluctuations of the
global density presented in the case K=1 apply to the case
K�1, as well. Thus, in the open system, the density profiles
averaged over configurations with a fixed global density,
���x� and ���x�, can be constructed from the solutions �13�
and �14�.

The structure of these profiles is identical to those ob-
tained in the case K=1 �see Fig. 13�. Generally, they consist

of three segments �see Fig. 13�b��: An equal-density segment
is located in the middle part of the system in the domain
�x0 , x̃0�. This region is connected with the left-hand boundary
by a complementary-density segment, which is continuous at
x=0, i.e., �c,l�0�=�, �c,l�0�=1−�, and with the right-hand
boundary by another complementary-density segment, which
is continuous at x=1, i.e., �c,r�1�=1−�, �c,r�1�=�. Each
lane contains a shock, which are at the opposite ends of the
equal-density segment �one at x0, the other one at x̃0�. The
location of the equal-density segment, as well as x0 and x̃0
are determined by the actual global density. If x0= x̃0� x̄, the
equal-density segment is lacking and �c,l�x� and �c,r�x� are
directly connected by a shock at x̄ �Fig. 13�c��. Since x0 and
x̃0 are not independent, the shocks move in a synchronized
way, and their motion is confined to the range �xmin,1�. If
one of the shocks is at x=1, the other one is at xmin, thus, the
lower bound xmin is determined by the equation �c,l�xmin�
=1−�e�xmin�, where �e�x� is the equal-density solution which
fulfills �e�1�=1−� �see Fig. 13�a��. The lower bound xmin is
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an increasing function of � �see Fig. 14�. In the limit �→0,
xmin tends to zero and if �→�1, xmin tends to 1, thus, at �
=�1, the shock becomes localized at x=1 and the system
enters the L-H phase. At this point, the density profile is
given by the special complementary-density solution, �c�x�
=�, �c�x�=1−�.

Similarly to the case K=1, the stochastic variation of the
global density ��t� is described by a bounded symmetric
random walk. The stationary density profile ��x� can be ob-
tained from the profile ���x� at a fixed global density by
averaging it over �. For K�1, we could not carry out the
averaging analytically, nevertheless, we can gain some infor-
mation on the stationary density profiles at x̄ without the
knowledge of the entire profile. At the point x̄, the relation
���x̄�=���x̄� holds for all �. This, together with the relation
��x�=1−��x� following from Eq. �7� implies that ��x̄�
=��x̄�=1/2. As it is shown in Appendix B, the ratio of the
first derivatives of the stationary density profile in lane A on
the two sides of the point x̄ is

d��x̄ − �
dx � d��x̄ + �

dx
=

K + �1 − K��0

1 − �1 − K��0
, �25�

where �0��c,��x̄�. In the case K�1, �0��1�1/2 always
holds, hence this ratio is smaller than 1 and the first deriva-
tive of the density profile is discontinuous at x̄. Furthermore,
it is clear that the stationary density profile is identical to the
complementary-density solution in the interval �0,xmin�,
since this domain is forbidden for the shocks. We have per-
formed numerical simulations for finite systems of size L
=64, 128, and 256 and measured the density profiles in the
same way as in the symmetric case at the coexistence line.
Results are shown in Fig. 15.

V. DISCUSSION

In this work, a two-lane exclusion process was studied,
where the particles are conserved in the bulk and each lane
can be thought of as a totally asymmetric simple exclusion
process with nonconserving kinetics in the bulk. As a conse-
quence, the model unifies the features of the particle conserv-
ing and bulk nonconserving exclusion processes, as far as the
dynamics of the shock is concerned. Namely, it exhibits

phases with a localized shock in one lane, while the other
one acts as a nonhomogeneous bulk reservoir, the position-
dependent density of which is determined by the dynamics
itself in a self-organized manner. On the other hand, the
model undergoes a discontinuous phase transition at the co-
existence line, where delocalized shocks form in both lanes
and move in a synchronized way. Here, the global density of
particles behaves as an unbiased random walk, similarly to
the TASEP at the coexistence line, however, the density pro-
files in the coexisting phases are not constant here.

Although we considered throughout this work exchange
rates proportional to 1/L, one may imagine other types of
scaling. For the TASEP with Langmuir kinetics, shock local-
ization is observed at the coexistence line when the creation
and annihilation rates vanish proportionally to 1/La with 1

a�2 �20�. It might be worth examining whether the syn-
chronization of shocks in the present model persists for lane
change rates vanishing faster than 1/L.

In the limit of large lane change rates, K=const, �A→�,
the density profiles and the boundaries of the phases exhib-
iting a localized shock are related to the zeros of the source
term in the hydrodynamic equation, which is generally
valid for systems with weak bulk nonconserving kinetics
�16,25,42�. However, different behavior is observed in gen-
eral when the lane change rates �A and �B are finite in the
limit L→�. In this case, the particle current from one lane to
the other may be finite at the boundary layers. These currents
add to the incoming and/or outgoing currents at the bound-
aries, which may lead to nontrivial bulk densities even in the
case K=1, where the profiles are constant.

Possible extensions of the present model are obtained
when different exit and entrance rates or different hop rates
in the two lanes are taken into account. Nevertheless, these
generalized versions are more difficult to treat because of the
reduced symmetry compared to that of the present model.
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APPENDIX A

We derive here an approximative expression for the cur-
rent in the H-H phase in the limit of small lane change rates.
Assuming that J� � 1

2 −��2, we may expand the right-hand
side of the differential equation �5� in a Taylor series up to
first order in J. Integrating the differential equation obtained
in this way yields

F��� �
1

K − 1
ln�� − �2� + J� K

�1 − K�2�ln
�

1 − �
−

1

�


+
1

�1 − K�2�ln
�

1 − �
+

1

1 − �
� = �Ax + const,

�A1�

where the first term on the left-hand side is just the equal-
density solution for J=0. The solution which obeys the
boundary condition ��1�=1−� is F���−F�1−��=�A�x−1�.
From this equation, we get for the density at the left-hand
boundary, �0� limx→0 ��x�, the implicit equation,

F��0� − F�1 − �� = − �A. �A2�

On the other hand, we have another relation between J and
�0,

J = �0�1 − �0� − ��1 − �� , �A3�

thus, we have closed equations for current. Note that the
leading order term on the left-hand side of Eq. �A2�, which
comes from the difference of the leading terms of F���
evaluated at �0 and 1−�, is O�J�, while the next-to-leading
contribution in Eq. �A2� is O�J2�. Expressing �0 from Eq.
�A3� and expanding it for small J, we get �0=1−�− J

1−2�

− J2

�1−2��3 +O�J3�. Substituting this expression into Eq. �A2�
gives an implicit equation for J. Assuming that J�� and
expanding the terms containing J in this equation in Taylor
series, we obtain finally

� +
1 + K

2
�2 + O��3� =

�A

1 − 2�
, �A4�

where �� J
�1−2����1−���1−K� . For small �, which amounts to

�A�1−2�, we get a good approximation for the current by
solving this quadratic equation and arrive at Eq. �23�.

APPENDIX B

As we have seen, the positions of the shocks in lane A and
lane B are not independent, thus, we may define thereby a
function x̃0�x0�, which is given implicitly by the equation
�e�x̃0�=1−�c,r�x̃0�, where �e�x� is the equal-density solution
which satisfies the condition �c,l�x0�=�e�x0�. In the follow-
ing, we shall denote the density in lane A at x0, if the shock
is located at xs, by �xs

�x0�. First, we notice that at the refer-
ence point x0 �x0� x̄�, �xs

�x0�=�c,l�x0� holds whenever the
shock in lane A resides between x0 and x̃0�x0�, i.e., x0�xs

� x̃0�x0�. Similarly, �xs
(x̃0�x0�)=�c,r�x̃0� if x0�xs� x̃0�x0�.

When the shock is outside this interval �xs� �x0 , x̃0��, then
�xs

�x0�=�e�x0�, where �e�x� is some equal-density solution
determined by the global density and �xs

�x0��1/2 or
�xs

�x0��1/2 if xs�x0 or xs� x̃0�x0�, respectively. As a con-
sequence of the particle-hole symmetry, the relation �xs

�x0�
=1−�x̃s�xs�

�x0� holds if xs� �x0 , x̃0�. Furthermore, in the sta-
tionary state, the probability that xs�x0 is equal to the prob-
ability that xs� x̃0�x0� for any x0
 x̄. Therefore the contribu-
tion to the average profile is 1 /2 when xs� �x0 , x̃0�. We can
thus write for the average densities at x0� x̄ and x̃0�x0�� x̄,

��x0� = p�x0��c,l�x0� + �1 − p�x0�� 1
2 ,

��x̃0� = p„x0�x̃0�…�c,r�x̃0� + �1 − p„x0�x̃0�…� 1
2 , �B1�

respectively, where p�x0� is the probability that the shock in
lane A resides in the interval �x0 , x̃0�x0��, and x0�x̃0� is the
inverse function of x̃0�x0�. For the spatial derivatives of the
densities at x0 and x̃0�x0�, we get

���x0� = p��x0���c,l�x0� − 1
2� + p�x0��c,l� �x0� ,

���x̃0� = p��x0�x0��x̃0���c,l�x̃0� − 1
2� + p„x0�x̃0�…�c,r� �x̃0� ,

�B2�

where the prime denotes derivation. Using that p�x̄�=0 and
�c,l�x̄�=1−�c,r�x̄�, we obtain for the ratio of the left- and
right-hand side derivatives at x̄,

���x̄ − �/���x̄ + � = �x̃0��x̄�� . �B3�

Expanding the functions �c,l�x�, �c,r�x�, and �e�x� in Taylor
series up to first order in x around x= x̄, we obtain

�x̃0��x̄�� =
�c,l� �x̄� − �e��x̄�
�e��x̄� − �c,r� �x̄�

. �B4�

Using Eq. �2�, these derivatives can be given in terms of
�0��c,��x̄� and we arrive at Eq. �25�.
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